

<u>ハイサイド電流検出アンプIC</u> BD3180FV

●概要

BD3180FVは、携帯機器(ノートPCやPDA)などの 二次電池(NiMH, Li-ion)への充放電電流一電圧変換 用ICです。ノートPCの電池の充電や放電の電流を 監視し、そのデータをCPUへ入力し電池の残量な どを管理できます。

●外形寸法図 (単位: mm)

●特長

- 1) 動作時消費電流 Max.100μAの低消費設計
- 2) スタンバイ時回路電流 Max.1µAの低消費設計
- 3)36V耐圧の高耐圧プロセス
- 4) 電圧ゲインの50倍、100倍切り換え機能
- 5) 高精度出力電圧ゲイン(±2%)

SSOP-B8

●用途

ノートPCやPDAなど携帯機器のバッテリ残量表示

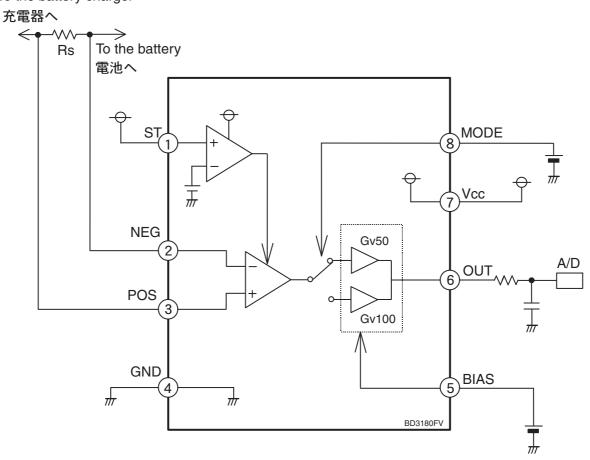
●絶対最大定格/Absolute Maximum Ratings (Ta=25°C)

Parameter	Symbol	Limits	Unit
電源電圧	Vcc	30	V
許容損失	Pd	350 *	mW
動作温度範囲	Topr	-30 ∼ +85	ŷ
保存温度範囲	Tstg	−55 ~ +125	°C

^{*} Ta=25°C以上で使用する場合は、1°Cにつき 3.5mWを減じる。 ガラスエポキシ基板実装時 (サイズ50mm×50mm×1.6mm)

●推奨動作条件/Recommended Operating Conditions (Ta=25°C)

Parameter	Symbol	Min.	Тур.	Max.	Unit	
電源電圧範囲	Vcc	3	5	30	V	


●電気的特性/Electrical characteristics (特に指定のない限りTa=25°C, Vcc=5V, Vbias=2.5v, Vmode=5V)

Parameter	Symbol	Min.	Тур.	Max.	Unit	Conditions
スタンバイ時消費電流	Isc	_	0	1.0	μΑ	Vst=0V
動作時消費電流	Icc	_	60	100	μΑ	ΔVin=0V
電圧ゲイン(100倍)	Gv1	98	100	102	mV/mV	Ta=-30~85°C *
電圧ゲイン(50倍)	Gv2	49	50	51	mV/mV	Ta=-30~85°C *
入力換算オフセット電圧	Voff	-0.5	0	0.5	mV	ΔVin=0V
同相入力電圧範囲	Vicm	1.8	_	30	V	
差動入力電圧範囲	Vidf	-200	_	200	mV	
入力バイアス電流	lb1	_	1.2	1.6	μΑ	ΔVin=0V, POS.Neg=2.5V
出力電圧 H	VoutH	Vcc-0.1	Vcc	_	V	
出力電圧 L	VoutL	_	0	0.1	V	Vcc=3V, Vbias=1.2V

^{*}高温及び低温での選別はしておりませんので、この温度範囲での規格は設計保証となります。

●応用回路例/Application Circuit

To the battery charger

